农业




–充分利用大数据技术,建立新型的农业,提高产能和优化分配

建立农业大数据平台,采集并存储大量的历史数据,外部数据,最终是为了让农业生产更智能,更高效。因此,需要运用先进的数据挖掘技术和人工智能技术来实现农业智能化。例如,根据历史天气状况和农作物生长状况来分析指导最佳实践,来提示预警潜在病虫害的风险和气象病的风险等等。这些智能化应用的实现主要需要用到数据挖掘和人工智能技术。大数据平台提供了数据挖掘和人工智能的算法库,并且还提供了数据建模工具方便用户进行数据清洗,数据建模和数据模型的测试。 大数据平台数据挖掘引擎实现了机器学习算法库与统计算法库,支持常用机器学习算法并行化与统计算法并行化,并利用Spark在迭代计算和内存计算上的优势,将并行的机器学习算法与统计算法运行在Spark上。支持的机器学习算法包括逻辑回归、朴素贝叶斯、支持向量机、聚类、线性回归、推荐算法等,统计算法库包括均值、方差、中位数、直方图、箱线图等。可以支持后期在平台上搭建多种分析型应用,例如用户行为分析、精准营销,将对用户贴标签、进行分类,此类应用都会用到平台的数据挖掘功能。 农业大数据是融合了农业地域性、季节性、多样性、周期性等自身特征后产生的来源广泛、类型多样、结构复杂、具有潜在价值,并难以应用通常方法处理和分析的数据集合。 农业大数据保留了大数据自身具有的规模巨大(volume)、类型多样(variety)、价值密度低(value)、处理速度快(velocity)、精确度高(veracity)和复杂度高(complexity)等基本特征,并使农业内部的信息流得到了延展和深化。

根据农业的产业链条划分,目前农业大数据主要集中在农业环境与资源、农业生产、农业市场和农业管理等领域。


(1)农业自然资源与环境数据。主要包括土地资源数据、水资源数据、气象资源数据、生物资源数据和灾害数据。

(2)农业生产数据包括种植业生产数据和养殖业生产数据。其中,种植业生产数据包括良种信息、地块耕种历史信息、育苗信息、播种信息、农药信息、化肥信息、农膜信息、灌溉信息、农机信息和农情信息;养殖业生产数据主要包括个体系谱信息、个体特征信息、饲料结构信息、圈舍环境信息、疫情情况等。

(3)农业市场数据包括市场供求信息、价格行情、生产资料市场信息、价格及利润、流通市场和国际市场信息等。

(4)农业管理数据主要包括国民经济基本信息、国内生产信息、贸易信息、国际农产品动态信息和突发事件信息等。

建立平台编辑

为了不断推进农业经济的优化,实现可持续的产业发展和区域产业结构优化,进一步推动智慧农业的建设进程,需要全面及时掌握农业的发展动态,这需要依托农业大数据及相关大数据分析处理技术,建设一个农业大数据分析应用平台—农业大数据平台来支撑。

在技术上,该平台应该充分运用先进数据管理技术和数据仓库技术,建设具有高效性,先进性,开放性的商务智能项目。结构上,该平台应具有良好的可配置性,满足资源、业务流程的变化。同时随着业务的发展,业务量的增加,系统也应该具有良好的应用及性能的扩展。平台拟实现功能:

(1)实现数据库的交互;
(2)根据农业大数据研究的个性化需求,形成一系列相关公开发布数据的采集机制,将数据采集的相关程序设计并编写完善,部署此套机制在平台上周期运转;(3)数据的浏览,对数据进行查询、展现和基础统计分析等初步应用;
(4)实现农业大数据分析人员的交流平台

平台拟实现目标:

(1)通过平台的建设,汇集各方资源,构建农业领域特色的大数据研究中心;
(2)通过数据整合,采集和加工处理,建设中国第一个专业的农业数据资源中心;
(3)依托农业大数据相关技术,包括数据采集技术、存储技术、处理技术、分析挖掘技术、展现技术等构建农业大数据应用平台;
(4)通过分析应用平台,进行成果发布,形成农业领域专业研究的权威成果发布平台,服务于高校和政府,涉农企业,社会公众等。